Graded polynomial identities, group actions, and exponential growth of Lie algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Actions on Algebras and the Graded Lie Structure of Hochschild Cohomology

Hochschild cohomology governs deformations of algebras, and its graded Lie structure plays a vital role. We study this structure for the Hochschild cohomology of the skew group algebra formed by a finite group acting on an algebra by automorphisms. We examine the Gerstenhaber bracket with a view toward deformations and developing bracket formulas. We then focus on the linear group actions and p...

متن کامل

Lie Group Actions on Simple Algebras

Let G be a connected Lie group acting by algebra automorphisms on a finite-dimensional complex central simple algebra A. The algebra A is isomorphic to the endomorphism algebra of a projective representation V of G. We study the invariant subalgebras of A. In particular, we show that if V is irreducible, then the invariant subalgebras appear in dual pairs arising from factorizations of V . We a...

متن کامل

Algebras, Dialgebras, and Polynomial Identities *

This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting oper...

متن کامل

From Lie Algebras of Vector Fields to Algebraic Group Actions

From the action of an affine algebraic group G on an algebraic variety V , one can construct a representation of its Lie algebra L(G) by derivations on the sheaf of regular functions on V . Conversely, if one has a finite-dimensional Lie algebra L and a homomorphism ρ : L → DerK(K[U ]) for an affine algebraic variety U , one may wonder whether it comes from an algebraic group action on U or on ...

متن کامل

Affine Lie algebras and multisum identities

It is well known that combinatorial identities of Rogers-Ramanujan type arise naturally from certain specializations of characters of integrable highest weight modules for affine Lie algebras. It is also known that for any positive integer k, the integrable highest weight module L(kΛ0) for an (untwisted) affine Lie algebra ĝ has a natural structure of a vertex operator algebra. In this paper us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2012

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2012.05.021